US010291408B2

a2 United States Patent

Campagna et al.

US 10,291,408 B2
May 14, 2019

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

GENERATION OF MERKLE TREES AS
PROOF-OF-WORK

Applicant: Amazon Technologies, Inc., Seattle,
WA (US)
Inventors: Matthew John Campagna, Bainbridge
Island, WA (US); Nicholas Alexander
Allen, Kirkland, WA (US); Gregory
Alan Rubin, Seattle, WA (US)
Assignee: Amazon Technologies, Inc., Seattle,
WA (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 84 days.

Appl. No.: 15/389,991

Filed: Dec. 23, 2016

Prior Publication Data

US 2018/0183601 Al Jun. 28, 2018

Int. CL.

HO4L 9/32 (2006.01)

GO6F 21/60 (2013.01)

HO4L 29/06 (2006.01)

U.S. CL

CPC ... HO4L 9/3247 (2013.01); GO6F 21/602

(2013.01); HO4L 9/3239 (2013.01); HO4L
63/1441 (2013.01); GO6F 2221/2103 (2013.01)
Field of Classification Search
CPC . HO4L 9/3247; HO4AL 9/30; HO4L 9/14; HO4L
9/0643; HOAL 9/0861
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
2016/0260091 Al* 9/2016 Tobias G06Q 20/3678
2016/0301531 Al* 10/2016 Finlow-Bates GOGF 21/33
2016/0330034 Al* 112016 Back G06Q 20/06
2017/0031676 Al* 2/2017 Cecchetti GOGF 8/65
2017/0126702 Al* 5/2017 Krishnamurthy HOAL 63/123
2017/0132621 Al* 52017 Miller G06Q 20/3829
2017/0163425 Al* 6/2017 Kaliski, Jr. . HO4L 9/3242
2017/0318008 Al* 112017 Mead HOAL 63/1466
2018/0025167 Al* 12018 Bohli ..c.cccecevvennnee GOG6F 21/602
2018/0039667 Al* 2/2018 Pierce GO6F 17/30371
2018/0053182 Al* 2/2018 Mokhasi G06Q 20/3829
2018/0088928 Al* 3/2018 Smithcccceeeenenns GOGF 8/65
2018/0089465 Al* 3/2018 Winstrom GOGF 21/64

OTHER PUBLICATIONS

Biryukov, Alex et al., “Egalitarian computing”, 25th USENIX
Security Symposium Aug. 10-12, 2016 * Austin, TX, pp. 319-326.
(Year: 2016).*

(Continued)

Primary Examiner — Michael Pyzocha

(74) Attorney, Agent, or Firm — Davis Wright Tremaine
LLP; Timothy Chou

(57) ABSTRACT

A proof-of-work system where a first party (e.g., a client
computer system) may request access to a computing
resource. A second party (e.g., a service provider) may
determine a challenge that may be provided to the first party.
A valid solution to the challenge may be generated and
provided for the request to be fulfilled. The challenge may
include a message and a seed, such that the seed may be used
at least in part to cryptographically derive information that
may be used to generate a solution to the challenge. A hash
tree may be generated as of generating the solution.

20 Claims, 6 Drawing Sheets

400

J

l Receive And Verify The Root Node Format I_ 402

Provide A Challenge Including: Identifier Of
Signing Key To Use; A Message

404

Authentication Path

Receive: A Public Signing Key Corresponding
To The Identifier; A Digital Signature; And An

- 406

Verify The Digital Signature Using The Public]_
408

[Signing Key

!

Verify The Authentication Path From The
Public Signing Key To The Root Node

IL 410

l

l Fulfill The Request

]\- 412

US 10,291,408 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Coelho, Fabien An (Almost) Constant-Eort Solution-Verication
Proof-of-Work Protocol based on Merkle Trees (extended and
colored version of [7]), Lst international conference on Progress in
cryptology, Jun. 2008, Casablanca,, Morocco, pp. 1-8. (Year: 2008).*
Biryukov, Alex et al., “Equihash: Asymmetric Proof-of-Work Based
on the Generalized Birthday Problem”, Cryptology ePrint Archive,
Report 2015/946, pp. 1-16. (Year: 2015).*

Dang, “Recommendation for Applications Using Approved Hash
Algorithms” NIST Special Publication 800-107, Revision 1, National
Institute of Standards and Technology (NIST), Aug. 2012, retrieved
on Nov. 24, 2015, from http://csrc.nist.gov/publications/nistpubs/
800-107-rev1/sp800-107-revl.pdf, 25 pages.

* cited by examiner

US 10,291,408 B2

Sheet 1 of 6

May 14, 2019

U.S. Patent

E

9Ll

d Jo4 Ujed uonesnusLINY

(7

Zll iyd
ol \ 4
N < asuodsey
8Ll , N
N N j\ /
— ‘ abusjeyd

00l

Obb] opessapy

801

p| Aoy

U.S. Patent May 14, 2019 Sheet 2 of 6 US 10,291,408 B2

200

Authentication Path For pks

(k) (Hig) ==« (o) v 210

FIG. 2

U.S. Patent May 14, 2019 Sheet 3 of 6 US 10,291,408 B2

300

J

Generate A Merkle Tree Of A Specified
Format - 302

I

Provide A Root Of The Merkle Tree L

I

Receive A Key ldentifier And A Message [306

l

Generate A Digital Signature Over The
Message Using The Merkle Tree And Key U 308
Identifier

l

Generate An Authentication Path From The
Public Signing Key To The Merkle Tree Root - 310

l

Provide As A Response To The Challenge:
The Public Signing Key; The Digital "C 3192
Signature; And The Authentication Path

|

Receive An Indication That Response To The
Challenge Was Verified N~ 314

304

FIG. 3

U.S. Patent May 14, 2019 Sheet 4 of 6 US 10,291,408 B2

400

J

Receive And Verify The Root Node Format N_ 400

:

Provide A Challenge Including: Identifier Of
Signing Key To Use; A Message 404

i

Receive: A Public Signing Key Corresponding
To The Identifier; A Digital Signature; And An
Authentication Path

I

Verify The Digital Signature Using The Public
Signing Key - 408

'

Verify The Authentication Path From The
Public Signing Key To The Root Node - 410

l

Fulfill The Request

"~ 406

= 412

FIG. 4

U.S. Patent May 14, 2019 Sheet 5 of 6 US 10,291,408 B2

500

Receive A Seed And Specific Format For A
Proof-Of-Work - 502

4
Generate A First/Next Node Of A Merkle Tree B\ 54

Node Satisfies
Format?

506

Yes

erkle Tree
Needs More
Nodes?

508

No
\ 4

Make The Root Node Of Merkie Tree
Available As A Proof-Of-Work Solution "~ 510

FIG. 5

U.S. Patent May 14, 2019 Sheet 6 of 6 US 10,291,408 B2

602

\» i
Application
Server

606

Web 608

Production

Information

610 612 614 616

FIG. 6

US 10,291,408 B2

1
GENERATION OF MERKLE TREES AS
PROOF-OF-WORK

BACKGROUND

Computer networks have evolved to provide sophisticated
functionality in a large variety of contexts. Providing such
functionality, however, often involves complex systems that
malicious entities may try to exploit. One such attack
involves denial-of-service attacks, which can be disruptive
to computer systems on a network. In a distributed denial-
of-service attack, for instance, large numbers of requests are
sent to a computer system to attempt to overload the
computer system. One way to mitigate against such attacks
is to configure a service such that requests to the service
incur some sort of expense, thereby providing a disincentive
to participating in the attack. One such expense involves
imposing a condition that a client submitting a request
expend more computational resources (e.g., CPU cycles) to
cause the request to be fulfilled. Other contexts also involve
issues that are addressable, at least in part, through imposi-
tion of an expense in exchange for a service’s operation.

However, imposing such expenses in exchange for com-
puter system functionality is often probabilistic in nature,
meaning that the expense may vary, often significantly. In
other words, making a request may sometimes incur a higher
computational expense and sometimes incur a lower com-
putational expense. The variance in expenses may detrimen-
tally impact requestor systems that provide assurances of
performance (e.g., a quality-of-service assurances) which
are based at least in part on accessing computational
resources of a service that imposes such expenses in
exchange for access to the computational resources.

BRIEF DESCRIPTION OF THE DRAWINGS

Various techniques will be described with reference to the
drawings, in which:

FIG. 1 shows an illustrative example of an environment in
which various embodiments may be practiced;

FIG. 2 shows an illustrative example of a Merkle tree and
the generation of a proof-of-work;

FIG. 3 shows a diagram illustrating a process for receiv-
ing and solving a proof-of-work challenge;

FIG. 4 shows a diagram illustrating a process for verifying
the solution to a proof-of-work challenge;

FIG. 5 shows a diagram illustrating a process for gener-
ating a Merkle tree as a proof-of-work; and

FIG. 6 illustrates an environment in which various
embodiments can be implemented.

DETAILED DESCRIPTION

This document describes techniques for using the genera-
tion of Merkle trees as a solution to a proof-of-work chal-
lenge. A proof-of-work system may refer to a system where,
to obtain access to computer system functionality, a party
may solve a problem and provide a proof-of-work as a
solution to the problem to a counterparty that is able to
verify the solution to the problem is correct. After the
counterparty verifies the solution is correct, the party may be
able to obtain one or more computing resources. A proof-
of-work problem may be more computationally difficult to
solve than to verify the solution. As an example, to generate
a complete binary hash tree having a depth of r (r a positive
integer), a system may computationally generate 2" leaf
nodes and perform 2"-1 cryptographic hash operations in

25

35

40

45

50

2

order to generate the root node. The hash tree may then be
used to generate an authentication path from a leaf node to
the root node. Verifying that a provided node value is a leaf
node of the binary tree may involve a counterparty compu-
tationally generating r hashes using the provided node value
and each collected node of the authentication path and
compare the output against the root node value which may
be obtained separately.

In some embodiments, a Merkle tree is used at least in part
to generate a proof-of-work solution in response to a chal-
lenge. A client may make an application programming (API)
request to a service provider to obtain one or more backend
computing resources of the service provider. Prior to or as
part of fulfilling the request, the service provider may issue
a challenge to the client and, as part of a proof-of-work
system, provide access to the requested computing resources
on a condition that the client provide a valid solution to the
challenge. In some embodiments, the client may provide a
valid solution to a challenge for every request (e.g., as part
of a mining process for cryptocurrencies such as Bitcoin).
However, in other embodiments, the client may be required
to provide a solution to a challenge upon the detection of one
or more conditions. For example, a service provider may
require all clients to provide a valid proof-of-work during
periods of abnormally high network traffic and/or when the
service provider detects an indication that the service pro-
vider may subject to a denial-of-service (DOS) or distributed
denial-of-service (DDOS) attack. A denial-of-service attack
may refer to an attack where a malicious party attempts to
prevent a computer system from operating normally by
flooding the computer system with requests beyond the
system’s capacity, either reducing responsiveness of the
system or causing the system to stop responding to legiti-
mate requests entirely. A distributed denial-of-service attack
may refer to a denial-of-service attack performed by mul-
tiple devices where the attack by the multiple devices may
be coordinated by one or more parties. In some embodi-
ments, a proof-of-work may be required for specific types of
devices such as webcams and digital video recorder (DVR)
devices that are identified as having potential security vul-
nerabilities that make such devices more likely to be par-
ticipants of a DDOS attack.

In some embodiments, when the service provider detects
an unusual traffic pattern (e.g., a sudden and unexpected
increase in identical or similar requests), the service provider
may require that all requests be accompanied by a valid
proof-of-work. Requiring a valid proof-of-work may miti-
gate a DOS or DDOS attack by causing the participants of
the DOS or DDOS attack to generate a valid proof-of-work
solution, which may require the use of computational
resources on the attacking systems and dramatically reduce
the rate at which entities participating in the attack may send
requests.

In some embodiments, the client may generate a Merkle
tree in response to receiving a challenge. The challenge may
include instructions to generate a Merkle tree of a specified
depth, seed information that may be used to derive nodes of
the Merkle tree, and a message. As an example, a challenge
may include generating a Merkle tree using a SHA-256
cryptographic hash algorithm having a root node value with
32 leading zeroes and to sign a provided message using the
first signing key (e.g., corresponding to the leftmost leaf
node) of the Merkle tree. More generally, a challenge may
require one or more nodes to have specific patterns. As an
example, a challenge may require that at each depth of the
Merkle tree, the node contains a number of leading zeroes at
least equal to its height (e.g., leaf nodes can have any value,

US 10,291,408 B2

3

parents of the leaf nodes must start with at least one leading
zero, grandparents of the leaf nodes must start with at least
two leading zeroes, and so on). The client may provide a root
node of a Merkle tree (e.g., the root node of the entire tree
generated or the root node of a subtree) to the service
provider as part of a first communication in connection with
the challenge.

The challenge may include instructions to generate a
Merkle tree and specify that a message should be signed
using a particular signing key of the Merkle tree. In some
embodiments, the seed information may include a key
identifier corresponding to a signing key of the Merkle tree.
In some embodiments, the challenge includes a work factor.
The work factor of a Merkle tree may refer to the number of
hash operations that are needed to generate a complete
Merkle tree. For example, a binary tree having 2"=n leaf
nodes may have a work factor on the order of 2"-1 based on
the number of hash operations that would be required to
generate a root node given n leaf nodes.

A message may be provided as part of a challenge. In
some embodiments, the client generates a digital signature
over the message using a cryptographic key. More generally,
the message may include data that may be provided to the
client as part of a challenge and may be used in connection
with determining the validity of a purported solution to a
challenge that may be provided by the client to the service
provider. In some embodiments, the message includes a
nonce. A nonce may be an arbitrary number, such as a
random or pseudo-random number, or may be determinis-
tically selected, for example, a timestamp or counter. In
some embodiments, the message includes a timestamp that
may be used as part of the verification of the solution. For
example, the message may include a timestamp wherein the
timestamp includes an expiration time before which the
solution must be received (e.g., giving the client a fixed
duration in which to provide a solution to the challenge). In
other embodiments, the message may include a timestamp
of when the message was transmitted or generated.

As part of providing a solution to the challenge, the client
may obtain a signing key pair in accordance with the seed
information, generate a digital signature using the private
signing key of the obtained key pair and the provided
message, and generate an authentication path from the leaf
node of the public signing key to the root node. The client
may provide as part of a response to the challenge: the public
signing key corresponding to the key identifier included in
the challenge; the digital signature generated using the
private signing key and the message, authenticity of the
digital signature being verifiable using at least the public
signing key and the authentication path between the public
signing key and the public key corresponding to the root
node. The client may provide the public signing key and the
authentication path to the service provider as part of a
second communication in connection with the challenge.

The service provider may receive the proof-of-work solu-
tion to the challenge. The service provider may verify digital
signature using the public signing key and message. The
received authentication path may be used to verify a path
from the signing key to the root node to verify that the key
used to generate the digital signature is a node of the Merkle
tree. After verifying that a solution to a challenge has been
correctly solved, the system may fulfill the request. In some
embodiments, the system may send an implicit indication
that the request has been fulfilled (e.g., providing a requested
resource to the requestor) or may send an explicit indication
that the request has been fulfilled (e.g., sending an acknowl-

10

15

20

25

30

35

40

45

50

55

60

65

4

edgement that the solution was received and/or verified to be
a correct solution to the challenge).

In the preceding and following description, various tech-
niques are described. For purposes of explanation, specific
configurations and details are set forth in order to provide a
thorough understanding of possible ways of implementing
the techniques. However, it will also be apparent that the
techniques described below may be practiced in different
configurations without the specific details. Furthermore,
well-known features may be omitted or simplified to avoid
obscuring the techniques being described.

FIG. 1 illustrates an environment in which various
embodiments can be implemented. The computing environ-
ment 100 illustrates a client 102 and a service provider 104
where a Merkle tree 106 is used at least in part to generate
a proof-of-work in response to a challenge. The client 102
may be a client computer that makes a request to a service
provider 104 to obtain one or more computing resources
(e.g., the computing resource 118 shown in FIG. 1) acces-
sible to the service provider 104 via a backend system. The
client 102 may be implemented using software, hardware, or
a combination of both, and may be connected to the service
provider 104 via any appropriate network, including an
intranet, the Internet, a cellular network, a local area net-
work, a satellite network or any other such network and/or
combination thereof.

The service provider 104 may be implemented using
software, hardware, or a combination of both. The service
provider 104 may comprise a frontend service and one or
more backend services. The frontend service may direct a
client’s request to some of the backend services, which in
turn fulfill the requested access to the one or more comput-
ing resources. In some embodiments, some of the backend
services may use an authentication module to authenticate
the client’s identity as part of or prior to the fulfillment of the
request.

In some embodiments, the client 102 may provide a
request to the service provider 104 to obtain one or more
computing resources such as the computing resources 118
shown in FIG. 1. Computing resources may include data
storage, virtual machine computer instances, network
access, and more. Prior to or as part of fulfilling the request,
the service provider 104 may issue a challenge to the client
102 and require that the client provide a valid solution to the
challenge prior to providing access to the requested com-
puting resources. In some embodiments, the client may
provide a valid solution to a challenge for every request
(e.g., as part of a mining process for cryptocurrencies such
as Bitcoin). However, in other embodiments, the client may
be required to provide a solution to a challenge only under
certain circumstances. For example, a service 104 may
require all clients to provide a valid proof-of-work during
periods of abnormally high network traffic and/or when the
service provider 104 detects an indication that the service
provider may subject to a denial-of-service (DOS) or dis-
tributed denial-of-service (DDOS) attack. In some embodi-
ments, a system may issue proof-of-work challenges upon
exceeding an upper network traffic threshold (e.g., where the
rate of incoming requests to the service provider exceeds a
predetermined threshold). A denial-of-service attack may
refer to an attack where a malicious party attempts to prevent
a computer system (such as the service provider 104 shown
in FIG. 1) from operating normally by flooding the computer
system with requests beyond the system’s capacity, either
reducing responsiveness of the system or causing the system
to stop responding to legitimate requests entirely. As a
second example, a service provider 104 may require one or

US 10,291,408 B2

5

more particular clients to provide a valid proof-of-work
based on the frequency, volume, and/or type of request(s)
that it receives from a particular client. A distributed denial-
of-service attack may refer to a denial-of-service attack
performed by multiple devices where the attack by the
multiple devices may be coordinated by one or more parties.
In some embodiments, a proof-of-work is required based on
the device type of the client making the request, which may
be determined based at least in part on whether the device or
device type of the client making the request. For example, a
proof-of-work may be required for devices such as webcams
and digital video recorder (DVR) devices that may be
identified as having potential security vulnerabilities that
make such devices more likely to be participants of a DDOS
attack.

In some embodiments, when the service provider 104
detects an unusual traffic pattern (e.g., a sudden and unex-
pected increase in identical or similar requests), the service
provider 104 may require that all requests be accompanied
by a proof-of-work, and that any requests that do not include
a proof-of-work are discarded or throttled. Likewise,
requests that are accompanied by a proof-of-work but which
is invalid (e.g., based on the verification of the solution) may
be discarded or throttled as well. A discarded request may
refer to a request that is not serviced or fulfilled in the normal
course of operations. In some embodiments, the service
provider 104 may have a queue of requests to fulfill and will
refuse to enqueue a request that lack a proof-of-work or
whose proof-of-work is invalid. Throttling requests may
refer to limiting the frequency of requests from a client that
the system will allow to be submitted and/or limiting the
frequency for how often requests for a client are fulfilled. By
requiring clients to provide a valid proof-of-work, a DOS or
DDOS attack may be mitigated because requests from
systems that lack a proof-of-work will not be serviced, and
the generation of a valid proof-of-work will take additional
computational resources that may dramatically reduce the
rate at which entities participating in the attack may send
requests.

In some embodiments, the client 102 may generate a
Merkle tree 106 in response to receiving a challenge. The
Merkle tree 106 shown in FIG. 1 may be generated in
accordance with techniques below, for example, in connec-
tion with FIG. 2. The challenge may include instructions to
generate a Merkle tree of a specified depth, a key identifier
108 corresponding to a signing key, and a message 110 for
which a digital signature should be generated on using the
signing key. In some embodiments, the challenge further
includes additional requirements regarding one or more
nodes of the Merkle tree. As an example, a challenge may
include generating a Merkle tree using a SHA-256 crypto-
graphic hash algorithm having a root node value with 32
leading zeroes and to sign a provided message using the first
signing key (e.g., corresponding to the leftmost leaf node) of
the Merkle tree. More generally, a challenge may require one
or more nodes to have specific patterns. As an example, a
challenge may require that at each depth of the Merkle tree,
the node contains a number of leading zeroes at least equal
to its height (e.g., leaf nodes can have any value, parents of
the leaf nodes must start with at least one leading zero,
grandparents of the leaf nodes must start with at least two
leading zeroes, and so on).

The challenge may include instructions to generate a
Merkle tree and specify that a message should be signed
using a particular signing key corresponding to a key
identifier 108. In some embodiments, the client 102 may
generate a Merkle tree 106 and provide a root node (such as

15

35

40

45

6

the public key PK) of the Merkle tree to the service provider
104 prior to receiving the key identifier 108 and message
110. The service provider may store (e.g., in a cache or
database) the root node value which may be as part of a
verification process for determining the validity of an
authentication path. In some embodiments, the key identifier
is an index of a key to be used. For example, the key index
may be a number between 1 and n (inclusive of endpoints)
where n is the number of leaf nodes of the Merkle tree. In
some embodiments, the number of leaf nodes corresponds to
a work factor related to the generation of the Merkle tree.
The work factor of a Merkle tree may refer to the number of
hash operations that are needed to generate a complete
Merkle tree. For example, a binary tree having 2"=n leaf
nodes may have a work factor on the order of 2"-1 based on
the number of hash operations that would be required to
generate a root node given n leaf nodes.

The message 110 may be provided as part of a challenge,
and in some embodiments, the client 102 generates a digital
signature over the message using a cryptographic key. More
generally, the message 110 may include data that may be
provided to the client as part of a challenge and may be used
in connection with determining the validity of a purported
solution to a challenge that may be provided by the client
102 to the service provider 104. In some embodiments, the
message 110 includes a nonce. A nonce may be an arbitrary
number, such as a random or pseudo-random number, or
may be deterministically selected, for example, a timestamp
or counter. In some embodiments, the message includes a
timestamp that may be used as part of the verification of the
solution. For example, the message may include a timestamp
wherein the timestamp includes an expiration time before
which the solution must be received (e.g., giving the client
a fixed duration in which to provide a solution to the
challenge). In other embodiments, the message may include
a timestamp of when the message was transmitted or gen-
erated.

The challenge may further include additional information
that may be used as part of generating the Merkle tree. For
example, the challenge may include additional parameters
that are to be included as part of a pre-image to a crypto-
graphic hash function that is used to generate one or more
nodes of the Merkle tree. In some embodiments, the client
102 may receive a challenge to generate a Merkle tree
wherein the pre-image to a cryptographic hash function
includes information that the client 102 chooses as well as
information that is provided to the client 102 by the service
provider 104. For example, a client may be required to
generate hashes using a SHA-256 hash algorithm where
each input to the hash function is concatenated with addi-
tional information that is provided by a counterparty. The
additional information may include an identifier correspond-
ing to the client (e.g., an email address) a timestamp (e.g., a
timestamp of when the request was made), an expected work
factor of the challenge, and a nonce. In some embodiments,
the additional information may be provided to the client 102
as part of the message 110 or separate from the message
(e.g., separate from the challenge). The work factor of the
challenge may indicate a size for a Merkle tree to be
generated. The size of the Merkle tree may refer to the
number of hash operations that are needed to generate a
complete Merkle tree, the height of the Merkle tree, or
various other properties that may be used to determine the
size, depth, and structure of a Merkle tree.

In some embodiments, all hashes generated within the
Merkle tree may use the additional information as part of the
pre-image input to a cryptographic hash function. In other

US 10,291,408 B2

7

embodiments, some but not all of the hashes generated
within the Merkle tree may use the additional information as
part of the pre-image input. For example, in some embodi-
ments, the leaf nodes may be generated using the additional
information as part of the pre-image input, or the root node
may be generated using the additional information as part of
the pre-image input. Verification of the authentication path,
likewise, may use the additional information to verify a
solution to the authentication path. In generating the authen-
tication path, the cryptographic hash function inputs may
also use the additional information as part of the pre-image
input.

As part of providing a solution to the challenge, the client
102 may obtain a signing key pair corresponding to the
provided key identifier 108, generate a digital signature
using the private signing key of the obtained key pair and the
provided message 110, and generate an authentication path
116 from the leaf node of the public signing key to the root
node. The client 102 may provide as part of a response to the
challenge: the public signing key 112 pk, corresponding to
the key identifier included in the challenge; the digital
signature 114 sig, generated using the private signing key sk,
and the message 110, authenticity of the digital signature
being verifiable using at least the public signing key pk;; and
the authentication path 116 between the public signing key
pk; and the public key PK corresponding to the root node
which the service provider may have received in a separate
communication and stored (e.g., in a cache or database) prior
to providing the public signing key and message to sign.

FIG. 2 illustrates an environment in which a Merkle tree
is used to generate a proof-of-work. The computing envi-
ronment 200 may include computer systems that are imple-
mented using hardware, software, or a combination thereof.

A Merkle tree 202 may be a tree-based data structure
where each non-leaf node of the Merkle tree is generated by
a cryptographic hash function having inputs that include at
least each child node of a particular non-leaf node. The root
node 204 of the Merkle tree may be a public key PK for a
Merkle tree signature scheme. In some embodiments, addi-
tional information, such as a nonce may be used as inputs in
addition to the child nodes as inputs to a cryptographic hash
function used to generate the value of a non-leaf node. In
some embodiments, the leat nodes of a Merkle tree may be
generated using any one-time signature key pairs including
key pairs in accordance with a Lamport-Diffie One-Time
Signature (LD-OTS) scheme or a Winternitz One-Time
Signature (W-OTS) scheme. In some embodiments, a com-
puter system may generate the leaf nodes of a Merkle tree by
generating n secret key values. The secret key values, sk,,
may be random or pseudo-random numbers that are gener-
ated, for example, by a pseudo-random number generator
(PRNG). For a binary Merkle tree, the number of secret
values generated for a Merkle tree may be a power of two,
but it is not required that the number of secret values be a
power of two. A system may use a cryptographic hash
function to generate the public keys pk,. A secret value sk,
may be an input to a cryptographic hash function and the
corresponding public key pk, may be the output. A crypto-
graphic hash function or pseudo-random function may be
used to generate the public key. The pair {sk;, pk,} may be
referred to as a signing key pair. The leaf nodes of the
Merkle tree may be the public keys. FIG. 2 shows an
example of a binary Merkle tree.

While the example Merkle trees shown in FIGS. 1-2 are
exemplary binary Merkle trees, any k-ary tree (i.e., a tree
structure wherein each node has at most k child nodes) may
be used in place of or in combination with other tree

40

45

50

55

8

structures. For example, in some embodiments, a ternary
tree (i.e., a tree structure wherein each node has at most three
child nodes) may be used in place of or in addition to a
binary tree.

A cryptographic function may generally refer to a func-
tion that deterministically maps a domain of inputs (e.g., a
pre-image) to a range of outputs (e.g., an image) in a manner
that appears truly random. Thus, given the output of a
cryptographic hash function, it should be no more likely that
any value in the domain of inputs was more likely to have
generated the output than another value in the domain.
Additionally, because cryptographic hash functions deter-
ministically maps a domain of inputs to a range of outputs,
the same input will generate the same output. Examples of
cryptographic hash functions include the secure hash algo-
rithm 2 (SHA-2) hash functions such as SHA-256 and
SHA-512.

An authentication path 210 may refer to a collection of
nodes 208 (i.e., hash values of the nodes) that may be used
to verify that a first node and a second node are connected
nodes of a Merkle tree. For example, an authentication path
210 may be formed from a public signing key pk; of the
signing key pair 206 to the root node PK 204. An authen-
tication path 210 may be verified by hashing the public
signing key pk; with the first node of the authentication path,
and iteratively hashing the hash outputs with the next node
of the authentication path. The authentication path 210 is
verified if the final output after iteratively hashing the public
key pk; with all nodes of the authentication path is equal to
the root node 204. The same principle described here may be
applied to build an authentication path between any non-leaf
node and a descendent node. In some embodiments, addi-
tional information may be obtained that may be used to
determine how the authentication path should be verified.
For example, the additional information may include infor-
mation regarding the position of the public signing key pk;,
information regarding the position of the respective nodes
included in the authentication path, or both. The additional
information may be used, for example, to determine the
order in which values should be concatenated to verify the
authentication path. For example, the information may be
used to determine whether a verification process should
generate a hash H(pk, Ho,tj) or H(H,,, pk,) as part of
verifying the authentication path where H,, is the first node
of the collected nodes of an authentication path and the
inputs to hash function H() are concatenated in the order in
which the inputs appear. The additional information may, for
example, include the position of the public signing key pk;
in the Merkle tree, which may be used to determine the order
in which the nodes of the authentication path should be
concatenated in for each iterative hash.

In some embodiments, the leaf nodes, intermediate nodes,
root node, and combinations thereof may be generated in
accordance in a specific format. A specific format may refer
how the nodes are generated, the values of the nodes, and
more. For example, a specific format may require that a node
be generated using a cryptographic hash that includes a first
component that is chosen by the client and a second com-
ponent that is chosen by the party providing the challenge
(e.g., the service provider described above in connection
with FIG. 1), where the second component may include
information that is generated in response to receiving a
request, such as information regarding the user identity (e.g.,
an email address associated with a requestor such as the
client described above in connection with FIG. 1), the
request (e.g., timestamp based at least in part on the request),
and/or a nonce for the request. Additionally, a specific

US 10,291,408 B2

9

format may require that a node have a specific output value
format. For example, a specific format may require that a
leaf node generated from a cryptographic hash function be
generated having a predetermined number of leading zeros.
In some embodiments, a SHA-256 cryptographic hash algo-
rithm may be used to generate Merkle tree leaf node values
where the hash function output has a specified number of
leading zeros (e.g., 32 leading zeros). As a second example,
a format may be specified such that the intermediate nodes
are derived based at least in part on the child nodes as well
as additional information. The additional information may
include, for example, information regarding the user iden-
tity, request, and/or a nonce for the request. The root node
may be of a specified format as well.

A counterparty may also provide information that may be
used as part of generation of one or more nodes of the
Merkle tree. As an example, the service provider of FIG. 1
may provide the requestor one or more public signing key
values which may be used as the leaf node values for the
Merkle tree solution to a proof-of-work challenge. In some
embodiments, the specific format may be generated using a
combination of techniques described above. For example, a
first leaf node of a Merkle tree may be generated using a
cryptographic hash function to result in an output having a
substring value (e.g., 32 leading zeros of a SHA-256 hash
output) and the remaining leaf nodes derived from the output
(e.g., iteratively hashing the output to obtain one or more
other leaf node values). In some embodiments, a challenge
(such as the challenge described above in connection with
FIG. 1) may specify how one or more nodes should be
generated. The challenge may include additional informa-
tion that specifies a format in which the leaf nodes should be
generated.

In some embodiments, a proof-of-work may be solved by
providing a solution to a challenge or an alternate solution
to the challenge. In some embodiments, the counterparty
may accept an alternative solution in place of the solution.
As an example, a challenge may involve a proof-of-work
solution that involves generation of a Merkle tree with a root
node having a specific format (e.g., a SHA-256 hash func-
tion output having 32 leading zeroes) and leaf nodes that are
generated using an iterative hashing technique (e.g.,
described above), and an alternative solution may involve
the generation of a leaf node and/or intermediate node that
matches the same specified format (e.g., a leaf or interme-
diate node having 32 leading zeroes). Thus, a solution to the
challenge may involve the generation of a leaf node having
the same specified format. In some embodiments, the alter-
nate solution may involve the generation of a node having a
different specified format from the specified format of the
solution (e.g., a solution may involve generating a SHA-256
hash function output having 32 leading zeroes and an
alternate solution may involve generating a leaf node output
that is the product of two primes and identifying least one of
the two primes).

FIG. 3 shows an illustrative example of a process 300 for
handling a challenge. Generally, the process 300 may be
performed by any suitable computing environment such as
environments described above in connection with FIGS. 1-2.
The process may be performed as part of a process for
obtaining access to one or more computing resources. For
example, the process 300 may be performed by a client (e.g.,
client discussed in connection with FIG. 1) as part of a
request to access electronic resources of a service provider
(e.g., service provider discussed in connection with FIG. 1).

A computer system such as the client described above in
connection with FIG. 1 may make a request to obtain access

10

15

20

25

30

35

40

45

50

55

60

65

10

to one or more computing resources from a service provider.
The service provider may respond to the request by issuing
a challenge that involves generating a Merkle tree. The
system (e.g., a requestor) may generate 302 a Merkle tree.
The Merkle tree may be generated using techniques
described above, and further, may have a specified format
(e.g., the format being specified in the challenge). In some
embodiments, the leaf nodes, intermediate nodes, root node,
and combinations thereof may be generated in accordance in
a specific format. A specific format may refer how the nodes
are generated, the values of the nodes, and more. For
example, a specific format may require that a node be
generated using a cryptographic hash that includes a first
component that is chosen by the client and a second com-
ponent that is chosen by the party providing the challenge
(e.g., the service provider described above in connection
with FIG. 1), where the second component may include
information that is generated in response to receiving a
request, such as information regarding the user identity (e.g.,
an email address associated with a requestor such as the
client described above in connection with FIG. 1), the
request (e.g., timestamp based at least in part on the request),
and/or a nonce for the request. Additionally, a specific
format may require that a node have a specific output value.
For example, a specific format may require that a leaf node
generated from a cryptographic hash function be generated
having a predetermined number of leading zeros. In some
embodiments, a SHA-256 cryptographic hash algorithm
may be used to generate Merkle tree leaf node values where
the hash function output has a specified number of leading
zeros (e.g., 32 leading zeros). As a second example, a format
may be specified such that the intermediate nodes are
derived based at least in part on the child nodes as well as
additional information. The additional information may
include, for example, information regarding the user iden-
tity, request, and/or a nonce for the request. The root node
may be of a specified format as well. The challenge may
include instructions to the system to generate a Merkle tree
having a specified tree depth (e.g., to generate a Merkle tree
of depth r=8 or to generate a Merkle tree having 256 leaf
nodes).

More generally, the system may receive seed information
that may be used as part of generation of one or more nodes
of the Merkle tree. As an example, the challenge may
include one or more public signing key values which are to
be used as the leaf node values for the Merkle tree solution
to a proof-of-work challenge. In some embodiments, a first
leaf node of a Merkle tree may be generated using a
cryptographic hash function to result in an output having a
substring value (e.g., 32 leading zeros of a SHA-256 hash
output) and the remaining leaf nodes derived from the output
(e.g., iteratively hashing the output to obtain one or more
other leaf node values). In some embodiments, a challenge
(such as the challenge described above in connection with
FIG. 1) may specify how one or more nodes should be
generated. The challenge may include additional informa-
tion that specifies a format in which the leaf nodes should be
generated.

The computer system may provide 304 a root of the
Merkle tree to the service provider. In some embodiments,
the root node provided may be the root of the entire Merkle
tree (e.g., the public key 204 illustrated in FIG. 2), but in
some embodiments, a root node of a subtree may be pro-
vided. Continuing with FIG. 2 as an illustrative example,
H, , may be provided as the root node of the subtree having
child nodes H, , and H, ;, and so on. Returning to FIG. 3, the
system may, after providing the root node of a Merkle tree

US 10,291,408 B2

11

(e.g., the root of the full Merkle tree generated), receive 306
as part of a challenge a key identifier and a message. The key
identifier and challenge may be provided to the system by a
service provider after the service provider receives the root
of the Merkle tree. In some embodiments, the key identifier
may be an index position of the key that should be used to
digitally sign a message. The message may include infor-
mation corresponding to the user’s identity (e.g., an email
address) or may include information such as a nonce value
which may be a counter that is incremented for each request.

The received message may be used at least in part to
generate 308 a digital signature. The digital signature may
be generated using the message and a signing key that is
specified by the challenge, which may have been derived as
part of the generation of the Merkle tree. In some embodi-
ments, the generation of the digital signature may be per-
formed prior to, concurrent with, or after the generation of
the Merkle tree. In some embodiments, the digital signature
and/or message may include a timestamp wherein the time-
stamp includes an expiration time before which the solution
must be received (e.g., giving the client a fixed duration in
which to provide a solution to the challenge). In other
embodiments, the message may include a timestamp of
when the message was transmitted or generated.

After or concurrent with the generation of the Merkle tree,
the system may generate 310 an authentication path from the
signing key to the root node of the Merkle tree. An authen-
tication path may refer to a collection of nodes that may be
used to verify that a first node and a second node are
connected nodes of a Merkle tree. For example, an authen-
tication path may be formed from a leaf node of the Merkle
tree (e.g., a leaf node corresponding to the key identifier) to
the root node of the Merkle tree. An authentication path may
be verified by hashing the leaf node with the first node of the
authentication path, and iteratively hashing the hash outputs
with the next node of the authentication path. An authenti-
cation path may be generated in accordance with techniques
described above, for example, in connection with FIGS. 1-2.

In response to the challenge, the system may provide 312
a digital signature over a message, the public signing key
corresponding to the private signing key used to generate the
digital signature, and the generated authentication path. In
some embodiments, the proof-of-work may include the root
node, one or more leaf nodes, an authentication path, the
digital signature, or some combination thereof. In general,
the proof-of-work may include information that may be used
to verify a solution to a challenge, and may also provide an
indication that the client committed non-trivial computing
resources in the generation of the proof-of-work (e.g., per-
forming a number of cryptographic hash operations to
generate a Merkle tree). In some embodiments, a challenge
may require that a system provide two sets of solutions to the
challenge, where the second solution includes using a sec-
ond signing key of the Merkle tree to generate a second
digital signature that is also provided as part of the solution.
The service provider may verify that both sets of solutions
are correct. In some embodiments, the two signing keys are
selected independently, but in other embodiments, the selec-
tion of the second signing key may be based on the first
selected key. For example, if the first signing key is on the
left side of the tree (e.g., sk, shown in FIG. 2), the system
may select a second signing key from the right side of the
tree (e.g., sk, ; shown in FIG. 2). In this way, a service
provider may verify two authentication paths which provide
additional assurances that the client has generated the
Merkle tree.

25

30

40

45

50

55

12

Finally, the system may, receive 314 an indication that the
solution was verified. In some embodiments, the indication
that the solution was verified may be an implicit indication
(e.g., the system receives a requested resource) or may be an
explicit indication (e.g., the system receives an acknowl-
edgement that the solution was received and/or verified to be
a correct solution to the challenge). In some embodiments,
the system may instead receive an indication that the solu-
tion was invalid and may be presented with an opportunity
to re-submit a solution. For example, the system may
generate a correct solution to a challenge, but the correct
solution was subject to signal loss during transmission to the
counterparty resulting in the verification determining the
solution was incorrect. In some embodiments, the system
may be given another opportunity to submit the solution as
part of a second response to the challenge. The system may,
for the second response to the challenge, re-use the Merkle
tree that was generated (i.e., the generation of the Merkle
tree a second time may be unnecessary). Likewise, the
authentication path and even the provided first response may
be reused in some embodiments as part of re-submitting a
solution.

It should be noted that while the embodiment shown in
FIG. 3 includes separate steps for a proof-of-work challenge
that involves providing (e.g., in a first communication) the
root of a Merkle tree, receiving a key identifier and a
message, and then providing (e.g., in a second communica-
tion) a digital signature generated over the message using at
least in part on the key identifier, that these steps may be
consolidated such that the proof-of-work challenge may be
solved in fewer communications. For example, in an
embodiment, the system may generate a Merkle tree and
provide the entire Merkle tree as the solution to a proof-of-
work challenge. A service provider may receive the pur-
ported solution and verify one or more authentication paths
of the purported solution. Verifying an authentication path
may include selecting a node (e.g., a leaf node or an interior
node), generate one or more expected hash values, and
compare the expected hash values with those provided in the
purported solution.

FIG. 4 shows an illustrative example of a process 400 for
providing a challenge and verifying a proof-of-work solu-
tion to the challenge. Generally, the process 400 may be
performed by any suitable computing environment such as
environments described above in connection with FIGS. 1-2.
The process may be performed as part of a process for
obtaining access to one or more computing resources. For
example, the process 400 may be performed by a service
provider (e.g., service provider discussed in connection with
FIG. 1) as part of a request by a client (e.g., client discussed
in connection with FIG. 1) to access electronic resources of
the service provider.

The system may receive 402 the root node (e.g., from a
requestor). In some embodiments a client makes a request to
the system to obtain access to computing resources, the
service issues a challenge to generate a Merkle tree of a
specified format, and the client provides in a response the
root node of the tree that the client has purportedly gener-
ated. In some embodiments, the system further verifies that
the root node is of a specific format. The root node format
may refer to a specific format that is expected. For example,
the challenge may involve generating a Merkle tree having
a root node that starts with at least a fixed number of zeroes.
It should be noted, that some embodiments may allow the
Merkle tree output to be of any format, but may require that
the output be generated in a certain manner. For example, in
some embodiments, system may provide instructions to the

US 10,291,408 B2

13

client that the Merkle tree should be generated using a
particular cryptographic hash algorithm (e.g., SHA-256) and
that a first component of the hash input may be chosen by the
client, but that a second component of the hash input is of
a particular format (identity information corresponding to
the client, a nonce, etc.). In some embodiments, the root
node value is stored and used later as part of a verification
process (e.g., verifying 410 the authentication path from a
public signing key to the root node). The root node value
may be stored in short-term memory (e.g., volatile memory
such as RAM or a cache) or long-term memory (e.g., hard
disk drive). In some embodiments, the root node value may
be stored in a least-recently used (LRU) cache such that
there is an upper limit to the number of root node values
stored by the system. If the upper limit is exceeded, the root
node value for the request that was least recently used may
be discarded and the least recent request may need to
re-initiate its request and/or re-initiate a challenge-response
cycle (e.g., generate a new Merkle tree).

A system, such as the service provider described in
connection with FIG. 1, may provide 404 a challenge to a
requestor that includes a seed and a message to digitally
sign. A seed may refer to information that may be used by
a client to cryptographically derive data that may be used to
solve a challenge. For example, a seed may be used to
generate a Merkle tree. In some embodiments, a seed may be
used to cryptographically derive (e.g., by using the seed as
an input to a cryptographic hash operation or encryption
operation) a first leaf node value of a Merkle tree and derive
subsequent leaf node values of the Merkle tree by iterative
hashing of either the first leaf node or leaf nodes derived
from the first leaf node. In some embodiments, the seed may
be an identifier to a signing key. The identifier to the signing
key may be an index, the key itself, or information that may
be used to cryptographically derive the signing key. The
seed may be determined specifically for a particular client
that sent the request, for example, by including in the seed
information that identifies the client. For example, the seed
may include a network address or nonce that is associated
with the requestor and indicate that generation of one or
more nodes is performed by combining (e.g., concatenating)
the information associated with the requestor with a second
component that the client determines.

In some embodiments, the message includes a nonce. A
nonce may be an arbitrary number, such as a random or
pseudo-random number, or may be deterministically
selected, for example, a timestamp or counter. In some
embodiments, the message includes a timestamp that may be
used as part of the verification of the solution. For example,
the message may include a timestamp wherein the time-
stamp includes an expiration time before which the solution
must be received (e.g., giving the client a fixed duration in
which to provide a solution to the challenge). In other
embodiments, the message may include a timestamp of
when the message was transmitted or generated. In some
embodiments, the system may provide 404 a challenge that
omits the message and allow the client to digitally sign a
message that the client generates.

It should be noted that various components of the chal-
lenge may be provided separate or together. For example, in
some cases, a challenge may be generated to including a
message, seed information, and a work factor and the
challenge may be provided as part of a single transmission.
In other examples, the various components of the challenge
may be provided separately. For example, a work factor for
the Merkle tree to be generated may be provided to a client
even before a request is received. In such an embodiment,

20

25

40

45

55

14

the client may store the work factor information separately
and, in response to receiving other components of the
challenge, generate a proof-of-work solution. In some
embodiments, the client and service provider may coordi-
nate transmission of the various components of a challenge.
For example, after each component of a challenge is pro-
vided to a client from a service provider, the client may
provide an acknowledgement that a particular component
was received, and the service provider may provide another
component of the challenge in response to receiving the
acknowledgement.

After providing the challenge, the system may receive
406 a proof-of-work solution to the challenge. The proot-
of-work may include information that may be used by the
system to determine whether the solution to the challenge is
correct. In some embodiments, verifying the solution to a
proof-of-work challenge may be computationally easier than
generating the solution. The computational complexity of a
challenge may refer to the complexity class of a challenge in
accordance within the field of computational complexity
theory. In some embodiments, the computational complexity
of verifying the solution to a challenge is easier than the
computational complexity of generating a correct solution.
For example, a challenge to digitally sign a message using
a Merkle signature scheme may involve, as part of gener-
ating a correct solution, performing 2" cryptographic hash
operations where r is the depth of the generated Merkle tree.
Conversely, verifying that a signing key used to generate a
digital signature is a leaf node of a Merkle tree may involve
performing r cryptographic hash operations to verify an
authentication from a leaf node (corresponding to a signing
key) to the root node. As a second example, a system may
generate a two prime numbers and provide, as a challenge,
the product of the primes to a client wherein the solution to
the problem is to factor the provided product. In some
embodiments, the system receives 404 a proof-of-work
solution that includes a digitally signature, a public key
corresponding to the private key used to generate the digital
signature, a root node of a Merkle tree, and an authentication
path from a leaf node corresponding to the signing key to the
root node of a Merkle tree.

The system may verify 408 the digital signature using the
public signing key. Verification of the digital signature may
involve determining the authenticity and integrity of the
message and digital signature. Authenticity may refer to
assurances that a message was created by a party purporting
to be the author of the message. Integrity may refer to
assurances that a received message was not modified either
intentionally (e.g., by a malicious party) or unintentionally
(e.g., as a result of signal loss during transmission) from its
original form when the message was transmitted. The
received authentication path may be used to verify 410 a
path from the signing key to the root node—in other words,
to verify that the key used to generate the digital signature
is a node of the Merkle tree. In some embodiments, system
may have previously received (e.g., in step 402) and stored
the root node value. In some embodiments, additional infor-
mation may be obtained that may be used to determine how
the authentication path should be verified. For example, the
additional information may include information regarding
the position of the public key, information regarding the
position of the respective nodes included in the authentica-
tion path, or both. The additional information may be used,
for example, to determine the order in which values should
be combined to verify the authentication path. For example,
the information may be used to determine how a verification
process should generate a hash as part of verifying the

US 10,291,408 B2

15

authentication path (e.g., the order in which node values
should be concatenated). The additional information may,
for example, include the position of the public signing key
in the Merkle tree.

In some embodiments, verification of the solution to a
challenge may include verification of the root node format,
verification of the digital signature, and verification of the
authentication path in various orders and in some embodi-
ments may be performed in parallel or in a nondeterministic
order. Additionally, other verification steps may be taken in
accordance with the specific challenges presented. In some
embodiments, the system may also verify that an alternative
solution was provided and was correct. After verifying that
a solution to a challenge has been correctly solved, the
system may fulfill 412 the request. In some embodiments,
the system may send an implicit indication that the request
has been fulfilled (e.g., providing a requested resource to the
requestor) or may send an explicit indication that the request
has been fulfilled (e.g., sending an acknowledgement that
the solution was received and/or verified to be a correct
solution to the challenge).

In some embodiments, a challenge may involve generat-
ing a public key of an asymmetric signature scheme. For
example, a challenge may involve generating the public key
of'a Merkle signature scheme, wherein the public key of the
signature scheme includes combining the public signing key
values of the Merkle tree (e.g., concatenating the leaf node
values of a Merkle tree). In some embodiments, a system
that receives a solution to the challenge may further receive
the public key and verify that the challenge was completed
by using the public signing key to verify the authenticity of
the digital signature and using the public key of the signature
scheme to verity that the public signing key used to generate
the digital signature is in accordance with the signature
scheme (e.g., verifying an authentication path from the
public signing key to the root node of the Merkle tree). In
this way, a service provider may verify both that the signing
key was both used to sign the message and a key of the
signature scheme.

It should be noted that while the embodiment shown in
FIG. 4 includes separate steps for receiving (e.g., in a first
communication) the root node value, providing a key iden-
tifier and a message, and then receiving (e.g., in a second
communication) a public signing key, a digital signature,
and an authentication path, that these steps may be consoli-
dated such that the proof-of-work challenge may be solved
in fewer communications. For example, in an embodiment,
the system may receive a Merkle tree as the solution to a
proof-of-work challenge. The system receive the purported
solution and verify one or more authentication paths of the
purported solution by selecting a node (e.g., a leaf node or
an interior node) and generating one or more expected hash
values, and compare the expected hash values with node
values provided in the Merkle tree. In some embodiments,
the number of paths and/or the length of the paths verified
by the system may vary based, for example, on whether a
particular client has previously provided correct solutions
(e.g., an indicator that a particular client may be trustworthy
when it provides a purported Merkle tree solution) or has
previously provided incorrect solutions (e.g., an indicator
that a particular client may not actually be doing the work to
generate a Merkle tree in its purported solutions).

FIG. 5 shows an illustrative example of a process 500 for
generating a proof-of-work solution to a challenge. Gener-
ally, the process 500 may be performed by any suitable
computing environment such as environments described
above in connection with FIGS. 1-4. The process may be

20

30

40

45

16

performed as part of a process for obtaining access to one or
more computing resources. For example, the process 500
may be performed by a client (e.g., client discussed in
connection with FIG. 1) as part of a response to a challenge
received from a service provider (e.g., service provider
discussed in connection with FIG. 1).

A computer system such as a client described above in
connection with FIG. 1 may receive 502, for example from
a challenge, a seed and a specific format for which the
proof-of-work should conform to. The seed may refer to
information that may be used to derive (e.g., based at least
in part on performing a cryptographic operation) one or
more nodes. In some embodiments, the seed may be directly
used in the generation of one or more leaf nodes (e.g., where
the seed is part of an input to a cryptographic hash function
whose output corresponds to the one or more leaf nodes) or
generate the leaf nodes indirectly (e.g., generating leaf nodes
through iterative hashing from a seed value). A specific
format may refer how the nodes are generated, the values of
the nodes, and more. For example, a specific format may
require that a node be generated using a cryptographic hash
that includes a first component that is chosen by the client
and a second component that is chosen by the party provid-
ing the challenge (e.g., the service provider described above
in connection with FIG. 1), where the second component
may include information that is generated in response to
receiving a request, such as information regarding the user
identity, the request, and/or a nonce for the request. Addi-
tionally, a specific format may require that a node have a
specific output value. For example, a specific format may
require that a leaf node generated from a cryptographic hash
function be generated having a predetermined format. In
some embodiments, a SHA-256 cryptographic hash algo-
rithm may be used to generate Merkle tree leaf node values
where the hash function output has a specified number of
leading zeros (e.g., 32 leading zeros). As a second example,
a format may be specified such that the intermediate nodes
are derived based at least in part on the child nodes as well
as additional information. The additional information may
include, for example, information regarding the user iden-
tity, request, and/or a nonce for the request. The root node
may be of a specified format as well.

In some embodiments, the seed 504 is used to generate a
first node of the Merkle tree. For example, leaf nodes may
be generated by using a cryptographic hash function that
combines an input selected by the system (e.g., a counter
value) combined with a seed that includes a network address
associated with the system (e.g., internet protocol (IP)
address or email address). The first node may be generated
in accordance with techniques described above, for example,
in connection with FIGS. 1-4. The system may check 506
whether the generated node satisfies the specific format. For
example, in some embodiments, the first leaf node may be
required to have a predetermined format. If the generated
node does not satisfy the specified format, then the system
may discard one or more nodes (or even all nodes of the
Merkle tree being generated) and generate a new first node
value. For example, consider the case where a specified
format requires that all leaf nodes be generated with a
predetermined number of leading zeroes and that leaf nodes
are generated by iteratively hashing wherein a first leaf node
having a predetermined zeroes is hashed to generate a
second leaf node also having a predetermined number of
zeroes, and so on until all leaf nodes have been generated
through iterative hashing to have a predetermined number of
leading zeroes. The system may, after generating a first leaf
node with a predetermined number of leading zeroes, cal-

US 10,291,408 B2

17

culate a hash over the first leaf node and determine that the
hashed value does not have a predetermined number of
leading zeroes. In some embodiments, the leaf nodes are
discarded and the system may repeat the process by gener-
ating 504 a first node of the Merkle tree as described above
until all nodes match the specified format. After each node
is generated, the system checks 508 whether more nodes are
needed for the Merkle tree and may repeat this process until
all nodes are generated. Note that the process may vary in
accordance with the specified format. For example, in the
case where only one leaf node has a specified format (e.g.,
a leaf node used as a seed for iterative hashing) the system
may, after checking 506 that the node satisfies the specified
format, then generate the remaining nodes of the Merkle tree
without needing the check the format of the remaining nodes
as their values do not need to conform to a specific format.
Likewise, intermediate nodes and/or the root node may not
need to be checked to have a specific format if there are no
such formats being specified against those nodes. The chal-
lenge may specify how many nodes the system should
generate for the Merkle tree (e.g., by including a work factor
indicating the height of the Merkle tree).

Finally, the system may, after generating the Merkle tree,
make available 510 the root node as part of a proof-of-work
solution to a challenge. In some embodiments an authenti-
cation path between a node (e.g., a node cryptographically
derived from the provided seed) and the root node may also
be provided as part of the solution. In some embodiments,
such as those in accordance with a Merkle signature scheme,
may provide a generated public key. The generated public
key, for a Merkle signature scheme, may refer to the set of
public signing keys generated in the Merkle tree that may be
used to generate digital signatures, for example, in accor-
dance to a one-time hash-based signature scheme such as a
LD-OTS scheme or a W-OTS scheme.

FIG. 6 illustrates aspects of an example environment 600
for implementing aspects in accordance with various
embodiments. As will be appreciated, although a web-based
environment is used for purposes of explanation, different
environments may be used, as appropriate, to implement
various embodiments. The environment includes an elec-
tronic client device 602, which can include any appropriate
device operable to send and/or receive requests, messages,
or information over an appropriate network 604 and, in some
embodiments, convey information back to a user of the
device. Examples of such client devices include personal
computers, cell phones, handheld messaging devices, laptop
computers, tablet computers, set-top boxes, personal data
assistants, embedded computer systems, electronic book
readers, and the like. The network can include any appro-
priate network, including an intranet, the Internet, a cellular
network, a local area network, a satellite network or any
other such network and/or combination thereof. Compo-
nents used for such a system can depend at least in part upon
the type of network and/or environment selected. Many
protocols and components for communicating via such a
network are well known and will not be discussed herein in
detail. Communication over the network can be enabled by
wired or wireless connections and combinations thereof. In
this example, the network includes the Internet and/or other
publicly-addressable communications network, as the envi-
ronment includes a web server 606 for receiving requests
and serving content in response thereto, although for other
networks an alternative device serving a similar purpose
could be used as would be apparent to one of ordinary skill
in the art.

10

15

20

25

30

35

40

45

50

55

60

65

18

The illustrative environment includes at least one appli-
cation server 608 and a data store 610. It should be under-
stood that there can be several application servers, layers or
other elements, processes or components, which may be
chained or otherwise configured, which can interact to
perform tasks such as obtaining data from an appropriate
data store. Servers, as used herein, may be implemented in
various ways, such as hardware devices or virtual computer
systems. In some contexts, servers may refer to a program-
ming module being executed on a computer system. As used
herein, unless otherwise stated or clear from context, the
term “data store” refers to any device or combination of
devices capable of storing, accessing and retrieving data,
which may include any combination and number of data
servers, databases, data storage devices and data storage
media, in any standard, distributed, virtual or clustered
environment. The application server can include any appro-
priate hardware, software and firmware for integrating with
the data store as needed to execute aspects of one or more
applications for the client device, handling some or all of the
data access and business logic for an application. The
application server may provide access control services in
cooperation with the data store and is able to generate
content including, but not limited to, text, graphics, audio,
video and/or other content usable to be provided to the user,
which may be served to the user by the web server in the
form of HyperText Markup Language (“HTML”), Exten-
sible Markup Language (“XML”), JavaScript, Cascading
Style Sheets (“CSS”), JavaScript Object Notation (JSON),
and/or another appropriate client-side structured language.
Content transferred to a client device may be processed by
the client device to provide the content in one or more forms
including, but not limited to, forms that are perceptible to the
user audibly, visually and/or through other senses. The
handling of all requests and responses, as well as the
delivery of content between the client device 602 and the
application server 608, can be handled by the web server
using PHP: Hypertext Preprocessor (“PHP”), Python, Ruby,
Perl, Java, HTML, XML, JSON, and/or another appropriate
server-side structured language in this example. Further,
operations described herein as being performed by a single
device may, unless otherwise clear from context, be per-
formed collectively by multiple devices, which may form a
distributed and/or virtual system.

The data store 610 can include several separate data
tables, databases, data documents, dynamic data storage
schemes and/or other data storage mechanisms and media
for storing data relating to a particular aspect of the present
disclosure. For example, the data store illustrated may
include mechanisms for storing production data 612 and
user information 616, which can be used to serve content for
the production side. The data store also is shown to include
a mechanism for storing log data 614, which can be used for
reporting, analysis or other such purposes. It should be
understood that there can be many other aspects that may
need to be stored in the data store, such as page image
information and access rights information, which can be
stored in any of the above listed mechanisms as appropriate
or in additional mechanisms in the data store 610. The data
store 610 is operable, through logic associated therewith, to
receive instructions from the application server 608 and
obtain, update or otherwise process data in response thereto.
The application server 608 may provide static, dynamic, or
a combination of static and dynamic data in response to the
received instructions. Dynamic data, such as data used in
web logs (blogs), shopping applications, news services, and
other such applications may be generated by server-side

US 10,291,408 B2

19

structured languages as described herein or may be provided
by a content management system (“CMS”) operating on, or
under the control of, the application server. In one example,
a user, through a device operated by the user, might submit
a search request for a certain type of item. In this case, the
data store might access the user information to verify the
identity of the user and can access the catalog detail infor-
mation to obtain information about items of that type. The
information then can be returned to the user, such as in a
results listing on a web page that the user is able to view via
a browser on the user device 602. Information for a particu-
lar item of interest can be viewed in a dedicated page or
window of the browser. It should be noted, however, that
embodiments of the present disclosure are not necessarily
limited to the context of web pages, but may be more
generally applicable to processing requests in general, where
the requests are not necessarily requests for content.

Each server typically will include an operating system
that provides executable program instructions for the general
administration and operation of that server and typically will
include a computer-readable storage medium (e.g., a hard
disk, random access memory, read only memory, etc.) stor-
ing instructions that, when executed (i.e., as a result of being
executed) by a processor of the server, allow the server to
perform its intended functions.

The environment, in one embodiment, is a distributed
and/or virtual computing environment utilizing several com-
puter systems and components that are interconnected via
communication links, using one or more computer networks
or direct connections. However, it will be appreciated by
those of ordinary skill in the art that such a system could
operate equally well in a system having fewer or a greater
number of components than are illustrated in FIG. 6. Thus,
the depiction of the system 600 in FIG. 6 should be taken as
being illustrative in nature and not limiting to the scope of
the disclosure.

The various embodiments further can be implemented in
a wide variety of operating environments, which in some
cases can include one or more user computers, computing
devices or processing devices which can be used to operate
any of a number of applications. User or client devices can
include any of a number of computers, such as desktop,
laptop or tablet computers running a standard operating
system, as well as cellular, wireless and handheld devices
running mobile software and capable of supporting a num-
ber of networking and messaging protocols. Such a system
also can include a number of workstations running any of a
variety of commercially-available operating systems and
other known applications for purposes such as development
and database management. These devices also can include
other electronic devices, such as dummy terminals, thin-
clients, gaming systems and other devices capable of com-
municating via a network. These devices also can include
virtual devices such as virtual machines, hypervisors and
other virtual devices capable of communicating via a net-
work.

Various embodiments of the present disclosure utilize at
least one network that would be familiar to those skilled in
the art for supporting communications using any of a variety
of commercially-available protocols, such as Transmission
Control Protocol/Internet Protocol (“TCP/IP”), User Data-
gram Protocol (“UDP”), protocols operating in various
layers of the Open System Interconnection (“OSI”) model,
File Transfer Protocol (“FTP”), Universal Plug and Play
(“UpnP”), Network File System (“NFS”), Common Internet
File System (“CIFS”) and AppleTalk. The network can be,
for example, a local area network, a wide-area network, a

10

15

20

25

30

35

40

45

50

55

60

65

20

virtual private network, the Internet, an intranet, an extranet,
a public switched telephone network, an infrared network, a
wireless network, a satellite network, and any combination
thereof. In some embodiments, connection-oriented proto-
cols may be used to communicate between network end-
points. Connection-oriented protocols (sometimes called
connection-based protocols) are capable of transmitting data
in an ordered stream. Connection-oriented protocols can be
reliable or unreliable. For example, the TCP protocol is a
reliable connection-oriented protocol. Asynchronous Trans-
fer Mode (“ATM”) and Frame Relay are unreliable connec-
tion-oriented protocols. Connection-oriented protocols are
in contrast to packet-oriented protocols such as UDP that
transmit packets without a guaranteed ordering.

In embodiments utilizing a web server, the web server can
run any of a variety of server or mid-tier applications,
including Hypertext Transfer Protocol (“HTTP”) servers,
FTP servers, Common Gateway Interface (“CGI”) servers,
data servers, Java servers, Apache servers, and business
application servers. The server(s) also may be capable of
executing programs or scripts in response to requests from
user devices, such as by executing one or more web appli-
cations that may be implemented as one or more scripts or
programs written in any programming language, such as
Java®, C, C# or C++, or any scripting language, such as
Ruby, PHP, Perl, Python or TCL, as well as combinations
thereof. The server(s) may also include database servers,
including without limitation those commercially available
from Oracle®, Microsoft®, Sybase®, and IBM® as well as
open-source servers such as MySQL, Postgres, SQLite,
MongoDB, and any other server capable of storing, retriev-
ing, and accessing structured or unstructured data. Database
servers may include table-based servers, document-based
servers, unstructured servers, relational servers, non-rela-
tional servers, or combinations of these and/or other data-
base servers.

The environment can include a variety of data stores and
other memory and storage media as discussed above. These
can reside in a variety of locations, such as on a storage
medium local to (and/or resident in) one or more of the
computers or remote from any or all of the computers across
the network. In a particular set of embodiments, the infor-
mation may reside in a storage-area network (“SAN”)
familiar to those skilled in the art. Similarly, any necessary
files for performing the functions attributed to the comput-
ers, servers or other network devices may be stored locally
and/or remotely, as appropriate. Where a system includes
computerized devices, each such device can include hard-
ware elements that may be electrically coupled via a bus, the
elements including, for example, at least one central pro-
cessing unit (“CPU” or “processor”), at least one input
device (e.g., a mouse, keyboard, controller, touch screen, or
keypad) and at least one output device (e.g., a display
device, printer, or speaker). Such a system may also include
one or more storage devices, such as disk drives, optical
storage devices, and solid-state storage devices such as
random access memory (“RAM”™) or read-only memory
(“ROM”), as well as removable media devices, memory
cards, flash cards, etc.

Such devices also can include a computer-readable stor-
age media reader, a communications device (e.g., a modem,
a network card (wireless or wired), an infrared communi-
cation device, etc.), and working memory as described
above. The computer-readable storage media reader can be
connected with, or configured to receive, a computer-read-
able storage medium, representing remote, local, fixed,
and/or removable storage devices as well as storage media

US 10,291,408 B2

21

for temporarily and/or more permanently containing, stor-
ing, transmitting, and retrieving computer-readable informa-
tion. The system and various devices also typically will
include a number of software applications, modules, ser-
vices, or other elements located within at least one working
memory device, including an operating system and appli-
cation programs, such as a client application or web browser.
In addition, customized hardware might also be used and/or
particular elements might be implemented in hardware,
software (including portable software, such as applets) or
both. Further, connection to other computing devices such as
network input/output devices may be employed.

Storage media and computer readable media for contain-
ing code, or portions of code, can include any appropriate
media known or used in the art, including storage media and
communication media, such as, but not limited to, volatile
and non-volatile, removable and non-removable media
implemented in any method or technology for storage and/or
transmission of information such as computer readable
instructions, data structures, program modules or other data,
including RAM, ROM, Electrically Erasable Programmable
Read-Only Memory (“EEPROM”), flash memory or other
memory technology, Compact Disc Read-Only Memory
(“CD-ROM”), digital versatile disk (DVD) or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices or any other
medium which can be used to store the desired information
and which can be accessed by the system device. Based on
the disclosure and teachings provided herein, a person of
ordinary skill in the art will appreciate other ways and/or
methods to implement the various embodiments.

The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the invention as set forth in the
claims.

Other variations are within the spirit of the present
disclosure. Thus, while the disclosed techniques are suscep-
tible to various modifications and alternative constructions,
certain illustrated embodiments thereof are shown in the
drawings and have been described above in detail. It should
be understood, however, that there is no intention to limit the
invention to the specific form or forms disclosed, but on the
contrary, the intention is to cover all modifications, alterna-
tive constructions, and equivalents falling within the spirit
and scope of the invention, as defined in the appended
claims.

The use of the terms “a” and “an” and “the” and similar
referents in the context of describing the disclosed embodi-
ments (especially in the context of the following claims) are
to be construed to cover both the singular and the plural,
unless otherwise indicated herein or clearly contradicted by
context. The terms “comprising,” “having,” “including,”
and “containing” are to be construed as open-ended terms
(i.e., meaning “including, but not limited to,”) unless oth-
erwise noted. The term “connected,” when unmodified and
referring to physical connections, is to be construed as partly
or wholly contained within, attached to, or joined together,
even if there is something intervening. Recitation of ranges
of values herein are merely intended to serve as a shorthand
method of referring individually to each separate value
falling within the range, unless otherwise indicated herein
and each separate value is incorporated into the specification
as if it were individually recited herein. The use of the term
“set” (e.g., “a set of items™) or “subset” unless otherwise
noted or contradicted by context, is to be construed as a

30

40

45

55

22

nonempty collection comprising one or more members.
Further, unless otherwise noted or contradicted by context,
the term “subset” of a corresponding set does not necessarily
denote a proper subset of the corresponding set, but the
subset and the corresponding set may be equal.

Conjunctive language, such as phrases of the form “at
least one of A, B, and C,” or “at least one of A, B and C,”
unless specifically stated otherwise or otherwise clearly
contradicted by context, is otherwise understood with the
context as used in general to present that an item, term, etc.,
may be either A or B or C, or any nonempty subset of the set
of A and B and C. For instance, in the illustrative example
of a set having three members, the conjunctive phrases “at
least one of A, B, and C” and “at least one of A, B and C”
refer to any of the following sets: {A}, {B}, {C}, {A, B},
{A, C}, {B, C}, {A, B, C}. Thus, such conjunctive langnage
is not generally intended to imply that certain embodiments
require at least one of A, at least one of B and at least one
of C each to be present.

Operations of processes described herein can be per-
formed in any suitable order unless otherwise indicated
herein or otherwise clearly contradicted by context. Pro-
cesses described herein (or variations and/or combinations
thereof) may be performed under the control of one or more
computer systems configured with executable instructions
and may be implemented as code (e.g., executable instruc-
tions, one or more computer programs Or one or more
applications) executing collectively on one or more proces-
sors, by hardware or combinations thereof. The code may be
stored on a computer-readable storage medium, for example,
in the form of'a computer program comprising a plurality of
instructions executable by one or more processors. The
computer-readable storage medium may be non-transitory.
In some embodiments, the code is stored on set of one or
more non-transitory computer-readable storage media hav-
ing stored thereon executable instructions that, when
executed (i.e., as a result of being executed) by one or more
processors of a computer system, cause the computer system
to perform operations described herein. The set of non-
transitory computer-readable storage media may comprise
multiple non-transitory computer-readable storage media
and one or more of individual non-transitory storage media
of the multiple non-transitory computer-readable storage
media may lack all of the code while the multiple non-
transitory computer-readable storage media collectively
store all of the code. Further, in some examples, the execut-
able instructions are executed such that different instructions
are executed by different processors. As an illustrative
example, a non-transitory computer-readable storage
medium may store instructions. A main CPU may execute
some of the instructions and a graphics processor unit may
execute other of the instructions. Generally, different com-
ponents of a computer system may have separate processors
and different processors may execute different subsets of the
instructions.

Accordingly, in some examples, computer systems are
configured to implement one or more services that singly or
collectively perform operations of processes described
herein. Such computer systems may, for instance, be con-
figured with applicable hardware and/or software that enable
the performance of the operations. Further, computer sys-
tems that implement various embodiments of the present
disclosure may, in some examples, be single devices and, in
other examples, be distributed computer systems comprising
multiple devices that operate differently such that the dis-

US 10,291,408 B2

23

tributed computer system performs the operations described
herein and such that a single device may not perform all
operations.

The use of any and all examples, or exemplary language
(e.g., “such as”) provided herein, is intended merely to better
illuminate embodiments of the invention and does not pose
a limitation on the scope of the invention unless otherwise
claimed. No language in the specification should be con-
strued as indicating any non-claimed element as essential to
the practice of the invention.

Embodiments of this disclosure are described herein,
including the best mode known to the inventors for carrying
out the invention. Variations of those embodiments may
become apparent to those of ordinary skill in the art upon
reading the foregoing description. The inventors expect
skilled artisans to employ such variations as appropriate and
the inventors intend for embodiments of the present disclo-
sure to be practiced otherwise than as specifically described
herein. Accordingly, the scope of the present disclosure
includes all modifications and equivalents of the subject
matter recited in the claims appended hereto as permitted by
applicable law. Moreover, any combination of the above-
described elements in all possible variations thereof is
encompassed by the scope of the present disclosure unless
otherwise indicated herein or otherwise clearly contradicted
by context.

All references, including publications, patent applica-
tions, and patents, cited herein are hereby incorporated by
reference to the same extent as if each reference were
individually and specifically indicated to be incorporated by
reference and were set forth in its entirety herein.

What is claimed is:

1. A computer-implemented method, comprising:

obtaining, from a client computer system, a request to

access a computing resource in a computing resource
service provider environment;

providing, to the client computer system, a first compo-

nent of a challenge, the first component comprising a
seed and a work factor that indicate a size for a Merkle
tree to be generated;
obtaining, from the client computer system, a root node of
a generated Merkle tree;

providing, to the client computer system, a second com-
ponent of the challenge, the second component com-
prising a message and an identifier corresponding to a
public key in accordance with a Merkle digital signa-
ture scheme;

obtaining, from the client computer system:

a digital signature generated based at least in part on the
message provided to the client computer system;

the public key; and

a set of values that enables verification of the digital
signature using the public key;

using the public key, the set of values, the root node, and

the message to verify that the public key was generated
based at least in part on the seed and that, using the
Merkle digital signature scheme, that the digital signa-
ture is valid; and

fulfilling the request in response to verifying that the

digital signature is valid and that the public key was
generated based at least in part on the seed.

2. The computer-implemented method of claim 1,
wherein one or more leaf nodes of the Merkle tree to be
generated are cryptographically derivable from the seed.

3. The computer-implemented method of claim 1,
wherein the message comprises an identifier corresponding
to the client computer system and a timestamp.

10

25

30

35

40

45

50

24

4. The computer-implemented method of claim 1,
wherein verifying that the public key was generated based at
least in part on the seed includes:
performing one or more cryptographic operations to gen-
erate an output based at least in part on the public key
and one or more values of the set of values; and
determining the generated output and the obtained root
node match.
5. A system, comprising:
one or more processors; and
memory storing executable instructions that, if executed
by the one or more processors, cause the system to:
obtain, from a client computer system, a request to
access a computing resource;

determine a challenge, the challenge involving genera-
tion of at least a portion of a hash tree for a digital
signature scheme, the challenge encoding additional
data;

obtain proof of completion of the challenge, the proof
comprising a digital signature generated based at
least in part on the additional data;

use the digital signature scheme and the digital signa-
ture to verify that the at least the portion of the hash
tree was generated; and

provide access to the computing resource on a condi-
tion that the digital signature is valid.

6. The system of claim 5, wherein the memory stores
executable instructions that, if executed by the one or more
processors, further cause the system to:

obtain a root node of the hash tree from a requestor;

make the challenge available to the requestor in response
to obtaining the root node of the hash tree; and

verify that the at least portion of the hash tree was
generated by further generating an expected root node
and comparing the expected root node with the
obtained root node.

7. The system of claim 5, wherein the memory stores
executable instructions that, if executed by the one or more
processors, further cause the system to:

obtain at least a subtree of the hash tree;

verify, using the at least subtree, that the at least the
portion of the hash tree was generated; and

access to the computing resource is further conditioned
upon using the at least subtree to verify that the at least
portion of the hash tree was generated.

8. The system of claim 5, wherein:

the challenge comprises seed information, one or more
nodes of the hash tree being cryptographically deriv-
able based at least in part on the seed information;

a first input to a cryptographic hash function is based at
least in part on the seed information and a first leaf node
of the hash tree is generated based at least in part on a
corresponding first output of the cryptographic hash
function; and

a second input to the cryptographic hash function is based
at least in part on the first leaf node and a second leaf
node of the hash tree is generated based at least in part
on a corresponding second output of the cryptographic
hash function.

9. The system of claim 5, wherein:

the challenge further involves generation of a public key
of an asymmetric key digital signature scheme; and

the instructions to use the digital signature scheme and the
digital signature to verify that the at least the portion of
the hash tree was generated includes instructions to
verify authenticity of the digital signature based at least
in part on the public key.

US 10,291,408 B2

25

10. The system of claim 5, wherein the hash tree is a
non-binary tree.

11. The system of claim 5, wherein the system further
provides the challenge to a requestor based at least in part on
detecting one or more network traffic conditions.

12. The system of claim 11, wherein the system further
detects a device type of the requestor and provides the
challenge to the requestor further based at least in part on the
device type detected.

13. A non-transitory computer-readable storage medium
having stored thereon executable instructions that, as a result
of being executed by one or more processors of a computer
system, cause the computer system to at least:

obtain, from a client computer system, a request to access

a computing resource;
provide a challenge indicating a set of parameters for
generation of a hash tree for a digital signature scheme;
obtain proof of completion of the challenge, the proof
comprising a digital signature generated based at least
in part on at least a portion of the set of parameters;
use the digital signature scheme and the digital signature
to verify completion of the challenge; and

provide access to the computing resource on a condition

that the digital signature is valid.

14. The non-transitory computer-readable storage
medium of claim 13, wherein the challenge comprises an
identifier corresponding to the client computer system and
indicates that generation of one or more nodes of the hash
tree is based at least in part on an output of a cryptographic
hash function having an input based at least in part on the
identifier corresponding to the client computer system.

10

25

26

15. The non-transitory computer-readable storage
medium of claim 13, wherein the set of parameters indicates
one or more nodes of the hash tree have a predetermined
format.

16. The non-transitory computer-readable storage
medium of claim 13, wherein the executable instructions
further cause the computer system to:

obtain, in response to providing the set of parameters for

generation of the hash tree for the digital signature
scheme, a root node of the hash tree;

provide, in response to obtaining the root node, a message

and an indicator of the node in the hash tree with which
to digitally sign the message; and

verify the digital signature using at least the message.

17. The non-transitory computer-readable storage
medium of claim 13, wherein proof of completion of the
challenge includes providing the hash tree.

18. The non-transitory computer-readable storage
medium of claim 13, wherein the challenge indicates one or
more nodes of the hash tree are to be generated in accor-
dance with a one-time hash-based signature scheme.

19. The non-transitory computer-readable storage
medium of claim 13, wherein the executable instructions
further cause the computer system to obtain additional
information, wherein verification of the completion of the
challenge further includes using at least the additional
information and the set of parameters to cryptographically
derive a root node of the hash tree.

20. The non-transitory computer-readable storage
medium of claim 13, wherein the set of parameters includes
a nonce that is used at least in part to cryptographically
derive one or more nodes of the hash tree.

#* #* #* #* #*

